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Purpose: Single genetic variants in multifactorial disorders typically have small effects, so major increases in

disease risk are expected only from the simultaneous exposure to multiple risk genotypes. We investigated the

impact of genotype frequencies on the clinical discriminative accuracy for the simultaneous testing of 40

independent susceptibility genetic variants. Methods: In separate simulation scenarios, we varied the genotype

frequency from 1% to 50% and the odds ratio for each genetic variant from 1.1 to 2.0. Population size was 1 million

and the population disease risk was 10%. Discriminative accuracy was quantified as the area under the receiver-

operating characteristic curve. Using an example of genomic profiling for type 2 diabetes, we evaluated the area

under the receiver-operating characteristic curve when the odds ratios and genotype frequencies varied between

five postulated genetic variants. Results: When the genotype frequency was 1%, none of the subjects carried more

than six of 40 risk genotypes, and when risk genotypes were frequent (�30%), all carried at least six. The area

under the receiver-operating characteristic curve did not increase above 0.70 when the odds ratios were modest

(1.1 or 1.25), but higher genotype frequency increased the area under the receiver-operating characteristic curve

from 0.57 to 0.82 and from 0.63 to 0.93 when odds ratios were 1.5 or 2.0. The example of type 2 diabetes showed

that the area under the receiver-operating characteristic curve did not change when differences in the odds ratios

were ignored. Conclusions: Given that the effects of susceptibility genes in complex diseases are small, the

feasibility of future genomic profiling for predicting common diseases will depend substantially on the frequencies

of the risk genotypes. Genet Med 2007:9(8):528–535.
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Advances in genetics and genomics bear the promise of in-
dividualized medicine, in which health interventions, lifestyle
recommendations, and medication prescriptions are targeted
based on individuals’ genetic susceptibilities.1,2 Genome-based
individualized health interventions for common chronic dis-
eases, such as type 2 diabetes, asthma, osteoporosis, and car-
diovascular disease, will be based on the simultaneous testing
of multiple genetic variants, so-called genomic profiling, be-
cause single genetic variants each confer only a minor increase

in the risk of disease. To date, it is unclear whether genomic
profiling can be useful for the prediction of chronic diseases.

The usefulness of genomic profiling can be examined in
large-scale cohorts of individuals who have been extensively
genotyped and for whom prospective follow-up data on phe-
notypes and disease outcomes are available,3,4 or it can be esti-
mated in case-control studies if conducted in population-
based settings where the overall disease risk is known.
Nevertheless, major gaps currently exist in our knowledge base
in this area, which may have to wait years if not decades of
human genome epidemiologic investigations. Awaiting these
data, we investigated the clinical validity of future genomic
profiling using hypothetical but plausible simulated data.

Using simulation studies, we investigated the discriminative
accuracy of genomic profiling, which is the extent to which
genomic profiles can distinguish between those who will or will
not develop disease. We demonstrated that the simultaneous
testing of 20 weak susceptibility genes may yield a level of dis-
criminative accuracy comparable with that of total serum cho-
lesterol testing for the prediction of coronary heart disease and
neuropsychological testing for the prediction of Alzheimer
disease in asymptomatic individuals.5–7 The simultaneous test-
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ing of hundreds of susceptibility genes yielded an even better
discriminative accuracy, which could be useful for the identi-
fication of individuals at increased genetic risk of disease in
asymptomatic populations, but unlikely for the presymptom-
atic diagnosis of disease such as possible with genetic testing for
Huntington disease.8 We also demonstrated that a major pro-
portion of common chronic diseases can be explained by only
a few common genotypes or by a great many rare genotypes,9

which suggests that the identification of such common geno-
types is important in the feasibility of genomic profiling.

As single genetic variants in multifactorial disorders typi-
cally have small effects (as measured in terms of odds ratios
[ORs] or risk ratios, major increases in disease risk are ex-
pected only from the simultaneous exposure to multiple risk
genotypes. The size of the group that has an increased risk of
disease depends on the frequencies of the individual risk geno-
types: when risk variants are infrequent, substantial increases
in risk may only be expected for very small subgroups of the
population tested.10 The aim of the present analysis was to
investigate in a simulation study the impact of genotype fre-
quencies on the clinical validity of genomic profiling for the
prediction of chronic diseases.

MATERIALS AND METHODS
Modeling strategy

A genomic profile is defined by the genotype status on mul-
tiple genetic markers. The clinical validity of genomic profiling
is determined from the distributions of disease risks in subjects
who will develop the disease and those who will not. The dis-
ease risk associated with each profile, i.e., the predictive value
of the profile, is determined by the presence or absence of risk
genotypes on the genetic variants in the profile. For additive,
multiplicative, or other forms of synergistic joint effects at
multiple loci on disease risk, the more risk genotypes there are,
the higher is the disease risk associated with the genomic pro-
file. To obtain the distributions of disease risks for the calcula-
tion of the clinical validity, we need to specify: (1) the genomic
profiles of all individuals, (2) the disease risks associated with
the profiles, and (3) the disease status of all individuals. These
are modeled in three subsequent steps, for each combination
of the study parameters (genotype frequencies and odds ratios)
separately.

Modeling genomic profiles

In the modeling study, we assumed that at each individual
gene, there are two genotypes, one of which was associated
with an increased risk of disease—referred to as the risk geno-
type— and the other with the referent or baseline risk. Genetic
variants were modeled to be independent, i.e., no linkage dis-
equilibrium existed between them. For the construction of the
genomic profiles, we first created a vector for each genetic vari-
ant with as many copies of the two genotypes as indicated by
their frequencies and the sample size. Assuming that the alleles
at individual loci segregate independently, we then sampled,

randomly without replacement, for each subject a genotype
from each vector.

Modeling disease risks associated with genomic profiles

Next, we calculated the disease risks associated with the
genomic profiles using Bayes’ theorem. Bayes’ theorem states
that the posterior odds of disease are obtained by multiplying
the prior odds by the likelihood ratio (LR) of the test result, or
here with the LR of the genomic profile.11 The previous odds
are calculated from the population risk of disease:

Prior odds �
Population risk

1 � Population risk

and the posterior odds are converted back into probabilities:

Probability �
Odds

1 � Odds
,

which is the disease risk associated with the genomic profile.
The LR of a genomic profile can be obtained by multiplying

the LRs of the single genotypes because we assumed that geno-
types are transmitted independently from one generation to
the next and that the joint risks of multiple genotypes follow a
multiplicative risk model without any interactions.12,13 The LR
of a single genotype is the percentage of the genotype among
subjects who will develop the disease divided by the percentage
of the genotype among subjects who will not develop the
disease. The LR can be calculated from a 2 � 2 table (disease
status � genotype status), when the disease risk, genotype fre-
quency, and the risk ratio are known. As risk ratio, we used the
OR in our analyses because many genetic association studies
are (nested) case-control studies, which yield ORs as risk esti-
mates. Moreover, calculation of disease risks based on relative
risks can yield disease risks for the profiles that can be greater
than 100%. This problem, which easily can occur when com-
bining 40 genetic factors with larger effects (e.g., relative risk of
2), does not occur when disease risks are calculated from ORs.
This procedure has been described previously in more detail.8

Modeling disease status

To model disease status, we used a procedure that compares
the disease risk of each subject to a randomly drawn value
between 0 and 1 from a uniform distribution.14 A subject was
assigned to the group who will develop the disease when the
disease risk was higher than the random value and to the group
who will not develop the disease when the risk was lower than
the random value. This procedure ensures that for each
genomic profile, the percentage of people who will develop the
disease equals the disease risk associated with that profile,
when the subgroup of individuals with that profile is suffi-
ciently large.

Statistical analysis

Although it is possible to obtain an analytic solution for the
simple scenarios, we used simulation for greater flexibility. We
simulated genomic profiles and disease status for 1 million
subjects. In all scenarios, the population risk of disease was
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10% and the genomic profiles consisted of 40 genetic variants.
We recognize that the choice of these numbers is rather arbi-
trary, but it does help to illustrate the trend of combining ge-
netic variants to predict a common disease in the population.
To single out the effect of genotype frequencies, we first as-
sumed that all genetic markers had the same genotype frequen-
cies and the same effect sizes. This implies that genomic pro-
files with the same number of risk genotypes had the same
associated disease risks. The frequencies of the risk genotypes
varied from 1% to 50% and the ORs from 1.1 to 2.0. This range
of ORs is based on statistically significant pooled ORs from 50
meta-analyses on various gene-disease associations.15

Combining 40 genetic variants with two genotypes yields a
test with 240 different profiles. We proposed that genomic pro-
filing can be considered as a continuous test when the profiles
are expressed by their associated disease risks.10 Clinical valid-
ity was investigated as the discriminative accuracy, i.e., the ex-
tent to which genomic profiling can discriminate between sub-
jects who will develop the disease and those who will not,
which is for continuous variables indicated by the area under
the receiver-operating characteristic curve (AUC). The AUC
indicates whether a test is useful to identify individuals who are
at increased risk of disease (screening; e.g., AUC 0.75– 0.80) or
to diagnose a disease before the onset of symptoms (presymp-
tomatic diagnosis; AUC �0.99). The AUC shows the sensitiv-
ity (true positive rate) and specificity (1 � true negative rate) of
the test when the profiles are categorized in two groups based
on the disease risks associated with the profiles. The optimal
combination of sensitivity and specificity is determined by ex-
ternal factors, such as the medical, psychological, and financial
costs of false-positive and false-negative test results. The AUC
is calculated from the distribution of disease risks of subjects
who will develop the disease and of those who will not. The
AUC was obtained as the c statistic by the function somers2 in
the Hmisc library of R software.14

Next, we modeled a more realistic scenario in which effect
sizes and genotype frequencies differed between the genetic

markers. As a result, genomic profiles with the same number of
risk genotypes varied in the associated disease risks depending
on which genotypes were present in the profile. We investi-
gated the clinical validity of genomic profiling for the predic-
tion of type 2 diabetes based on the simultaneous testing of the
five susceptibility genes (Table 1). Population lifetime disease
risk was considered as 33%.16 AUCs were calculated for the
discriminative accuracy of disease risks, which takes into ac-
count differences in the ORs of the genotypes, and of the num-
ber of risk genotypes, which does not take into account these
differences.

All simulations were replicated 50 times to obtain more ro-
bust estimates for the size of the population at risk, for the
disease risks associated with the genomic profiles, and for the
estimates of the AUC. Average estimates of the 50 replications
are presented. Because we simulated populations of 1 million
subjects, confidence intervals around these estimates were so
small (e.g., 95% confidence interval of AUC estimates was
��0.01) that these could not be made visible in the graphs. All
analyses were performed using R software version 2.5.0
(www.R-project.org; accessed May 2007).

RESULTS
Distributions of genomic profiles and disease risks

Figure 1 shows the distributions of the genomic profiles rep-
resented as the number of risk genotypes in the profiles. When
the frequencies of all risk genotypes were 1%, two thirds of the
population had no risk genotypes and one fourth had only one
risk genotype of 40 genetic variants. None of the subjects had
more than six risk genotypes, which means that the probability
of having seven or more risk genotypes was lower than 1 per
million. Yet when the frequency of the risk genotypes was 30%,
all individuals had at least one risk genotype, and when the
frequency was 50%, all had at least five. The distribution of the
number of risk genotypes in the total population was indepen-

Table 1
Genetic variants for type 2 diabetes susceptibility: data obtained from meta-analyses or pooled analyses of large-scale studies

Published data Data used in this study

Genetic polymorphism At-risk variant Variant frequency OR (CI) At-risk genotype(s) Variant frequency OR

PPAR� P12A17 PP 78% 1.40 (1.12–1.76) PP 78% 1.40

KCNJ11 E23K18 KK 13% 1.44 (1.17–1.78) KK 13% 1.36a

EK 46% 1.12 (1.01–1.23)

CAPN10 SNP44 T(�g4841)C19 C allele 16% 1.17 (1.02–1.34) TC/CC 29%a 1.19a

HNF1A A98V20 V allele 3% 1.31 (1.08–1.59) AV/VV 6%a 1.31a

TCF7L221 TT 7% 2.11 (P � 5.16a10�10) TT 47% 1.51a

GT 40% 1.42 (P � 10�16)

OR, odds ratio; CI, 95% confidence intervals.
aTo obtain the data, we constructed a disease status � genotype status table based on the published genotype frequencies, odds ratios, and a disease risk of 33%.16 We
assumed that allele and genotype frequencies were in Hardy-Weinberg equilibrium. When odds ratios were published for the risk allele, we assumed a multiplicative
effect associated with the presence of two copies of the risk allele. Heterozygous and homozygous risk genotypes were then combined and a composite OR was
calculated.
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dent of the disease risk in the total population (data not shown)
and of the ORs of the risk genotypes (Fig. 1).

The dark bars in Figure 1 represent the distribution of the
number of risk genotypes for individuals who will develop the
disease and the white bars the distribution for those who will
not. When the ORs were low (OR � 1.1 or 1.25), subjects who
will develop the disease had approximately the same distribu-
tion of the number of risk genotypes compared with subjects
who will not develop the disease, in terms of the shape and
location of the distributions. This is explained by the modest
effect sizes of the individual variants. When the ORs were 1.5 or
higher, those who would develop the disease tended to have
genomic profiles with more risk genotypes than those who
would not develop the disease.

As expected, higher disease risks were obtained when ORs of
the single genetic variants were higher (Fig. 2). When the OR
was 1.1, genomic profiling at best resulted in a threefold in-
crease in the disease risk when the genotype frequency was
50%, but this risk increase only applied to �1 in 100,000 indi-
viduals even when the risk genotypes were common. When the
ORs of each genetic variant were 1.5 or 2.0, a larger proportion
of the population had at least a fivefold increase in disease risk
when the risk genotypes were common (5.0% when OR was 1.5
and 5.4% when OR was 2.0; Fig. 2).

Discriminative accuracy

Genomic profiling had low discriminative accuracy (AUC
�0.70) when the ORs of the 40 genetic variants were low (1.1

Fig. 1. Distributions of the genomic profiles in the total population as a function of the frequency and effects of the single risk genotypes. Genomic profiles were defined by 40
susceptibility genes, the population disease risk was 10%, and the population size was 1 million. The figures are stacked bar charts. The black parts of the bars indicate the percentage of the
total population that will develop the disease and the white parts the percentage that will not develop the disease. The x-axis indicates the number of risk genotypes out of 40 genes in the
genomic profile. The y-axis indicates the percentage of persons in the total population, e.g., 67% of the total population carries no risk genotypes when the genotype frequency is 1%.
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or 1.25; Fig. 3). Discriminative accuracy was also low when the
profiles include genetic variants that were stronger predictors
of disease but which had rare risk genotypes: when the fre-
quency of the risk genotype was 1%, the AUC was 0.57, when
ORs of the individual variants were 1.5 and 0.63 when their
ORs were 2.0. The AUC increased substantially to 0.80 (OR �
1.5) and 0.92 (OR � 2.0) when the frequencies of the risk
genotypes were 30%, but there was only minimal further im-
provement in the AUC when the frequencies increased to 50%
(0.82 for OR � 1.5 and 0.93 for OR � 2.0).

Example

Figure 4 shows the disease risks and AUC for genomic pro-
filing of type 2 diabetes in which the genetic variants varied in
the effect sizes and frequencies of the risk genotypes. Differ-
ences in effect sizes resulted in variation in the type 2 diabetes
risk within subgroups of individuals who had genomic profiles
with the same number of risk genotypes, except for those
whose profiles included none (6.7% of the population) or all
five risk genotypes (0.1%). Forty percent of the population had
genomic profiles that included two risk genotypes. These indi-
viduals had disease risks that were around the population risk
of 33%. The AUC of genomic profiling based on the disease

risk did not differ from that based on counting of the number
of risk genotypes (both AUC � 0.58).

DISCUSSION

These results show that the discriminative accuracy of
genomic profiling using 40 low-risk genetic variants was low
when genotype frequencies were low, even when the ORs were
2.0. The discriminative accuracy was substantially higher when
risk genotypes with modest effects were more frequent. Fur-
thermore, the example of type 2 diabetes, in which ORs and
genotype frequencies varied between the five postulated sus-
ceptibility genetic variants (ORs ranging from 1.19. to 1.51)
showed that the AUC was rather low and did not change when
differences in the ORs were ignored.

Three methodological issues need to be addressed. First, we
found that none of the subjects had more than six risk geno-
types of 40 genetic variants when the genotype frequency was
1%, and all subjects had at least five risk genotypes when the
genotype frequency was 50%. This does not mean that the
other combinations (e.g., 39 risk genotypes of 40) do not oc-
cur, but rather that they are extremely unlikely: they were not
represented by chance in a population of 1 million subjects.

Fig. 2. Disease risks associated with genomic profiles resulting from the simultaneous testing of 40 susceptibility genes. Genomic profiles were defined by the number of risk genotypes,
based on the simultaneous testing of 40 genes that all have the same genotype frequencies and odds ratios, as indicated. Population disease risk was 10% (indicated by the dashed line). The
x-axis indicates the number of risk genotypes of 40 genes tested. The lower x-axis presents the distribution of the number of risk genotypes in the total population, which corresponds with
the distributions in Figure 1. Population size was 1 million. The lines in the graphs end when the frequency of the number of risk genotypes was less than 1 in 1 million.

Janssens et al.

532 Genetics IN Medicine



Second, we assumed that common diseases are caused by many
common variants, each conveying only minor increases in dis-
ease risk, and investigated the role of genotype frequencies
within a small range of effect sizes. Yet, under the common

disease–rare variant hypothesis, multiple rare variants, each
being a sufficient causal factor, may be combined into a larger
category of variants with strong effects. This scenario, provided
that the rare variants combined are not too rare, may be an
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Fig. 3. Discriminative accuracy of genomic profiling as a function of the frequency and effects of the single risk genotypes. Genomic profiling was based on the testing of 40 genes that all
have the same genotype frequencies and odds ratios, as indicated. Areas under the receiver-operating characteristic curve (AUCs) accompany the distributions of Figure 1. The values of the
AUCs refer to the lines from left to right representing odds ratios of 2.0 (dashed-dotted line), 1.5 (dashed line), 1.25 (dotted line), and 1.1 (solid line). Population disease risk was 10%.

Fig. 4. Disease risks and discriminative accuracy of genomic profiling for predicting type 2 diabetes using five susceptibility genes. Population disease risk was 33% (dashed line).16 AUC,
area under the receiver-operating characteristic curve.
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exception to our results. Third, similar to others, we assumed a
multiplicative model to calculate the probability of disease for
the genomic profiles.12,13 When the ORs are the same for all
variants, then the discriminative accuracy is determined by the
number of risk genotypes in the genomic profile rather than by
their ORs. This means that the discriminative accuracy will be
the same under the assumptions of additive and multiplicative
risk models. Yet, the disease risks associated with the genomic
profiles do depend on the ORs of the assumptions of the risk
model and will likely be lower and closer to the population
disease risk when an additive risk model is assumed. Fourth, we
did not consider gene-gene interaction effects in this report, as
there is an infinite number of ways in which 40 genetic variants
can interact. Depending on their strength and direction, inter-
actions may or may not improve the discriminative accuracy of
genomic profiling and change the disease risks associated with
the profiles. Our model can be easily extended to include joint
effects, but large-scale studies and meta-analyses should still
demonstrate the role of joint effects to warrant evaluation of
their contribution to clinical usefulness of genomic profiling.

When all risk genotypes were stronger risk factors of disease
(OR � 1.5 or 2.0), which is not a very realistic scenario in
complex diseases, discriminative accuracy was still poor (AUC
�0.70) when the risk genotypes were rare, but excellent (AUC
�0.80) when they were common. Frequent risk genotypes
with ORs of 1.5 even yielded a test with higher discriminative
accuracy than the same number of risk genotypes with ORs of
2.0 but that were rare. Higher frequency of the risk genotype
also yielded a higher AUC when the odds ratios were low
(OR � 1.1 or 1.25), but the discriminative accuracy remained
poor. We previously demonstrated that genomic profiling by
up to 400 susceptibility genes with ORs of 1.1 had a poor dis-
criminative accuracy, but that profiling by 80 common vari-
ants with ORs of 1.25 could be useful for the identification of
at-risk groups (AUC �0.80).8

In addition, the example of type 2 diabetes showed that there
was no difference in the discriminative accuracy when
genomic profiling was considered by counting the number of
risk genotypes in each profile or by calculating the associated
disease risks. Simply counting the number of risk genotypes in
the profiles ignores that different genetic variants have differ-
ent effect. The finding that the two approaches had the same
AUC suggests that the differences in the effect sizes of the ge-
netic variants in complex diseases may be too minor to affect
the discriminative accuracy of genomic profiling, and that
given the small differences in effect sizes, the frequencies of the
risk variants will determine the future feasibility of genomic
profiling for the prediction of common diseases.

The results of the present studies demonstrate the impor-
tance of genotype frequency in the clinical validity of genomic
profiling. Obviously, compared with genetic variants with
weak effects, variants with strong effects lead to higher disease
risks for those exposed. Yet variants with strong effects are
generally rare and for that reason less likely to be useful for the
prediction of common diseases because only a limited number
of people will be exposed to multiple rare variants simulta-

neously. It has been demonstrated that the sensitivity and spec-
ificity of single genetic tests with two genotypes can only be
maximal when the frequency of the risk variant is equal to the
risk of disease22: predicting a rare disease by a common risk
genotype or a common disease by a rare risk genotype by def-
inition yields false-positive and false-negative findings, respec-
tively. Similarly, maximal discriminative accuracy for genomic
profiling—if possible at all—may only be realized when the
combined frequency of what are considered at-risk profiles
equals the disease risk.

Finally, the discriminative accuracy of type 2 diabetes pre-
diction by genomic profiling using five susceptibility genes was
poor (AUC � 0.58), but these results should be interpreted
with caution. While effect estimates came from pooled studies
or meta-analyses, these genetic variants are still subject to con-
firmation of their association with type 2 diabetes. The exam-
ple of type 2 diabetes, in which only a limited number of sus-
ceptibility genes have been identified, is typical for common
chronic diseases.23 The unraveling of the genetic basis for
chronic diseases is making remarkable progress and discover-
ies of new susceptibility genes and of gene-gene and gene-en-
vironment interactions are expected. This progress is facili-
tated by networks of investigators who combine their data to
provide the large-scale epidemiological studies required for the
identification of weak susceptibility genes (ORs �1.20) and
interaction effects.24,25 While it is expected that variants in
TCF7L2 are likely the strongest genetic risk factors for type 2
diabetes,26 this paper suggests that discoveries of common
variants with weaker effects may still improve the discrimina-
tive accuracy of genomic profiling to a level useful for the pre-
diction of disease in asymptomatic individuals. Nevertheless,
several companies are prematurely selling online predictive
genomic profiling for individualized nutrition and lifestyle
recommendations based on a limited number of susceptibility
genes.27,28 The present analyses suggest that testing a small
number of weak susceptibility genes (OR � 1.25) may not even
be useful for the identification of at-risk individuals.

In conclusion, not only effect sizes of gene-disease associa-
tions but also genotype frequencies have a profound role in
both the clinical validity of genomic profiling and the number
of individuals who are at increased genetic risk. Both strong
associations and frequent risk genotypes may benefit the feasi-
bility of individualized medicine for common chronic diseases.
Genotype frequencies should therefore be given greater atten-
tion when reporting the results of genetic association studies.
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